134 research outputs found

    altered expression of cD300a inhibitory receptor on cD4+ T cells From human immunodeficiency Virus-1-infected Patients: association With Disease Progression Markers.

    Get PDF
    The ability of the CD300a inhibitory receptor to modulate immune cell functions and its involvement in the pathogenesis of many diseases has aroused a great interest in this molecule. Within human CD4+ T lymphocytes from healthy donors, the inhibitory receptor CD300a is differentially expressed among different T helper subsets. However, there are no data about the expression and regulation of CD300a receptor on CD4+ T cells from human immunodeficiency virus (HIV)-1-infected patients. The objective of this study was to investigate the expression of CD300a on CD4+ T cells from HIV-infected patients on suppressive combined antiretroviral therapy (cART) and cART naïve patients. Our results have demonstrated that the expression levels of this inhibitory receptor were higher on CD4+ T cells from HIV-1 infected subjects compared with healthy donors, and that cART did not reverse the altered expression of CD300a receptor in these patients. We have observed an increase of CD300a expression on both PD1+CD4+ and CD38+CD4+ T cells from HIV-1 infected people. Interestingly, a triple positive (CD300a+PD1+CD38+) subset was expanded in naïve HIV-1 infected patients, while it was very rare in healthy donors and patients on cART. Finally, we found a negative correlation of CD300a expression on CD4+ T lymphocytes and some markers associated with HIV-1 disease progression. Thus, our results show that HIV-1 infection has an impact in the regulation of CD300a inhibitory receptor expression levels, and further studies will shed light into the role of this cell surface receptor in the pathogenesis of HIV infection

    Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection

    Get PDF
    Approximately 25% of elite controllers (ECs) lose their virological control by mechanisms that are only partially known. Recently, immunovirological and proteomic factors have been associated to the loss of spontaneous control. Our aim was to perform a metabolomic approach to identify the underlying mechanistic pathways and potential biomarkers associated with this loss of control. Methods: Plasma samples from EC who spontaneously lost virological control (Transient Controllers, TC, n=8), at two and one year before the loss of control, were comparedwith a control group of ECwho persistently maintained virological control during the same follow-up period (Persistent Controllers, PC, n=8). The determination of metabolites and plasma lipids was performed by GC-qTOF and LC-qTOF using targeted and untargeted approaches. Metabolite levels were associated with the polyfunctionality of HIV-specific CD8+T-cell response. Findings: Our data suggest that, before the loss of control, TCs showed a specific circulating metabolomic profile characterized by aerobic glycolytic metabolism, deregulated mitochondrial function, oxidative stress and increased immunological activation. In addition, CD8+ T-cell polyfunctionality was strongly associated with metabolite levels. Finally, valine was the main differentiating factor between TCs and PCs. Interpretation: All these metabolomic differences should be considered not only as potential biomarkers but also as therapeutic targets in HIV infection.Instituto Carlos III PI10/02635 PI13/00796 PI16/00503 PI12/02283 PI16/00684 CPII014/00025 FI14/00431 FI17/00186 INT11/240 INT12/282 INT15/226Fondos Europeos para el Desarrollo Regional PI10/02635 PI13/00796 PI16/00503 PI12/02283 PI16/00684 CPII014/00025 FI14/00431 FI17/00186FEDER PI10/02635 PI13/00796 PI16/00503 PI12/02283 PI16/00684 CPII014/00025 FI14/00431 FI17/00186FEDER PI10/02635 PI13/00796 PI16/00503 PI12/02283 PI16/00684 CPII014/00025 FI14/00431 FI17/00186Programa de Suport als Grups de Recerca 2017SGR948 2014SGR250Gilead Fellowship Program GLD14/293 GLD17/00299Red de Investigación en Sida RD12/0017/0005 RD16/0025/0006 RD12/0017/0029 RD16/0025/0020Junta de Andalucía C-0032/17Generalitat de Catalunya PERIS SLT002/16/0010

    Deciphering the quality of SARS-CoV-2 specific T-cell response associated with disease severity, immune memory and heterologous response

    Get PDF
    SARS-CoV-2 specific T-cell response has been associated with disease severity, immune memory and heterologous response to endemic coronaviruses. However, an integrative approach combining a comprehensive analysis of the quality of SARS-CoV-2 specific T-cell response with antibody levels in these three scenarios is needed. In the present study, we found that, in acute infection, while mild disease was associated with high T-cell polyfunctionality biased to IL-2 production and inversely correlated with anti-S IgG levels, combinations only including IFN-γ with the absence of perforin production predominated in severe disease. Seven months after infection, both non-hospitalised and previously hospitalised patients presented robust anti-S IgG levels and SARS-CoV-2 specific T-cell response. In addition, only previously hospitalised patients showed a T-cell exhaustion profile. Finally, combinations including IL-2 in response to S protein of endemic coronaviruses were the ones associated with SARS-CoV-2 S-specific T-cell response in pre-COVID-19 healthy donors’ samples. These results could have implications for protective immunity against SARS-CoV-2 and recurrent COVID-19 and may help for the design of new prototypes and boosting vaccine strategies

    Evolution of Serum Acute-Phase Glycoproteins Assessed by 1H-NMR in HIV Elite Controllers

    Get PDF
    Elite controllers (ECs) are an exceptional group of people living with HIV (PLWH) who maintain undetectable viral loads (VLs) despite not being on antiretroviral therapy (ART). However, this phenotype is heterogeneous, with some of these subjects losing virological control over time. In this longitudinal retrospective study, serum acute-phase glycoprotein profile assessed by proton nuclear magnetic resonance (1H-NMR) was determined in 11 transient controllers (TCs) who spontaneously lost virological control and 11 persistent controllers (PCs) who persistently maintained virological control over time. Both PCs and TCs showed similar acute-phase glycoprotein profiles, even when TCs lost the virological control (GlycB, p = 0.824 and GlycA, p = 0.710), and the serum acute-phase glycoprotein signature in PCs did not differ from that in HIV-negative subjects (GlycB, p = 0.151 and GlycA, p = 0.243). Differences in serum glycoproteins A and B were significant only in ECs compared to HIV-typical progressors (TPs) with < 100 CD4+ T-cells (p < 0.001). 1H-NMR acute-phase glycoprotein profile does not distinguish TCs form PCs before the loss of viral control. ECs maintain a low-grade inflammatory state compared to TPs. PCs revealed a closer serum signature to HIV-negative subjects, reaffirming this phenotype as a closer model of functional control of HIV.This research was funded by the Fondo de Investigacion Sanitaria [PI16/00503, PI19/01337 and PI20/00326]-ISCIII-FEDER (co-funded by the European Regional Development Fund/European Social Fund; “A way to make Europe”/“Investing in your future”); Programa de Suport als Grups de Recerca AGAUR (2017SGR948); the SPANISH AIDS Research Network [RD12/0017/0005, RD12/0025/0001, RD16/0025/0006]-ISCIII-FEDER (Spain) and Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-ISCIII [CB21/13/00015, CB21/13/00020, CB13/21/00086], Madrid, Spain. JM is supported by the Universitat Rovira i Virgili under grant agreement “2019PMF-PIPF-18,” through the call “Martí Franquès Research Fellowship Programme”. FV is supported by grants from the Programa de Intensificación de Investigadores (INT20/00031)-ISCIII. AR is supported by a grant from IISPV through the project “2019/IISPV/05” (Boosting Young Talent), by GeSIDA through the “III Premio para Jóvenes Investigadores 2019” and by the Instituto de Salud Carlos III (ISCIII) under grant agreement “CP19/00146” through the Miguel Servet Program.S

    Different profiles of immune reconstitution in children and adults with HIV-infection after highly active antiretroviral therapy

    Get PDF
    BACKGROUND: Recent advances in characterizing the immune recovery of HIV-1-infected people have highlighted the importance of the thymus for peripheral T-cell diversity and function. The aim of this study was to investigate differences in immune reconstitution profiles after highly active antiretroviral therapy (HAART) between HIV-children and adults. METHODS: HIV patients were grouped according to their previous clinical and immunological status: 9 HIV-Reconstituting-adults (HIV-Rec-adults) and 10 HIV-Reconstituting-children (HIV-Rec-children) on HAART with viral load (VL) ≤400 copies/ml and CD4(+ )≥500 cells/μL at least during 6 months before the study and CD4(+ )≤300 cells/μL anytime before. Fifteen healthy-adults and 20 healthy-children (control subjects) were used to calculate Z-score values to unify value scales between children and adults to make them comparable. RESULTS: HIV-Rec-children had higher T-cell receptor excision circles (TREC) and lower interleukin (IL)-7 levels than HIV-Rec-adults (p < 0.05). When we analyzed Z-score values, HIV-Rec-children had higher TREC Z-score levels (p = 0.03) than HIV-Rec-adults but similar IL-7 Z-score levels. Regarding T-cell subsets, HIV-Rec-children had higher naïve CD4(+ )(CD4(+)CD45RA (hi+)CD27(+)), naïve CD8(+ )(CD8(+)CD45RA (hi+)CD27(+)), and memory CD8(+ )(CD8(+)CD45RO(+)) cells/μl than HIV-Rec-adults, but similar memory CD4(+ )(CD4(+)CD45RO(+)) counts. HIV-Rec-children had lower naïve CD8(+ )Z-score values than HIV-Rec-adults (p = 0.05). CONCLUSION: Our data suggest that HIV-Rec-children had better thymic function than HIV-Rec-adults and this fact affects the peripheral T-cell subsets. Thus, T-cell recovery after HAART in HIV-Rec-adults could be the consequence of antigen-independent peripheral T-cell expansion while in HIV-Rec-children thymic output could play a predominant role in immune reconstitution

    Immunoescape of HIV-1 in Env-EL9 CD8 + T cell response restricted by HLA-B*14:02 in a Non progressor who lost twenty-seven years of HIV-1 control

    Get PDF
    Background: Long-Term Non-Progressors (LTNPs) are untreated Human Immunodeficiency virus type 1 (HIV-1) infected individuals able to control disease progression for prolonged periods. However, the LTNPs status is temporary, as viral load increases followed by decreases in CD4 + T-cell counts. Control of HIV-1 infection in LTNPs viremic controllers, have been associated with effective immunodominant HIV-1 Gag-CD8 + T-cell responses restricted by protective HLA-B alleles. Individuals carrying HLA-B*14:02 control HIV-1 infection is related to an immunodominant Env-CD8 + T-cell response. Limited data are available on the contribution of HLA-B*14:02 CD8 + T -cells in LTNPs. Results: In this study, we performed a virological and immunological detailed analysis of an HLA-B*14:02 LNTP individual that lost viral control (LVC) 27 years after HIV-1 diagnosis. We analysed viral evolution and immune escape in HLA-B*14:02 restricted CD8 + T -cell epitopes and identified viral evolution at the Env-EL9 epitope selecting the L592R mutation. By IFN-γ ELISpot and immune phenotype, we characterized HLA- B*14:02 HIV-1 CD8 + T cell responses targeting, Gag-DA9 and Env-EL9 epitopes before and after LVC. We observed an immunodominant response against the Env-EL9 epitope and a decreased of the CD8 T + cell response over time with LVC. Loss of Env-EL9 responses was concomitant with selecting K588R + L592R mutations at Env-EL9. Finally, we evaluated the impact of Env-EL9 escape mutations on HIV-1 infectivity and Env protein structure. The K588R + L592R escape variant was directly related to HIV-1 increase replicative capacity and stability of Env at the LVC. Conclusions: These findings support the contribution of immunodominant Env-EL9 CD8 + T-cell responses and the imposition of immune escape variants with higher replicative capacity associated with LVC in this LNTP. These data highlight the importance of Env-EL9 specific-CD8 + T-cell responses restricted by the HLA-B*14:02 and brings new insights into understanding long-term HIV-1 control mediated by Env mediated CD8 + T-cell responses.Molecular Virology Laboratory was supported by grants SAF (2016-77894-R) from Ministerio de Economía y Competitividad (MINECO), ISCIII through the projects PI 13/02269, PI17/00164, PI16/0684, PI19/01127 (Co-funded by European Regional Development Fund/European Social Fund "Investing in your future"). The RIS-RETIC grants RD12/0017/0028, RD16/0025/0020 and RD16CIII/0002/0005. LTD was supported by the Instituto de Salud Carlos III (ISCIII) under grant agreement “CD20/00025” through the Sara Borrell Program. O.B.L was funded by an AGAUR-FI_B 00582 Ph.D. fellowship from the Catalan Government and the European Social Fund. M.A. was funded by grants RYC-2015-18241 and PID2019-107931GA-I00 from the Spanish Government and, ED431F 2018/08 from the “Xunta de Galicia”. ERM was supported by the Spanish National Research Council (CSIC). JGP laboratory was supported by National Health Institute Carlos III grant PI17/00164 and Redes Temáticas de Investigación en SIDA (ISCIII RETIC RD16/0025/0041). The funders had no role in study design, data collection and analysis, the decision to publish or drafting of the manuscript.S

    Innate and adaptive immune defects associated with lower SARS-CoV-2 BNT162b2 mRNA vaccine response in elderly people

    Get PDF
    The immune factors associated with impaired SARS-CoV-2 vaccine response in the elderly are mostly unknown. We studied old and young people vaccinated with SARS-CoV-2 BNT162b2 mRNA before and after the first and second dose. Aging was associated with a lower anti-RBD IgG levels and a decreased magnitude and polyfunctionality of SARS-CoV-2 specific T cell response. The dramatic decrease in thymic function in the elderly, which fueled alteration in T cell homeostasis, and lower CD161+ T cell levels were associated with decreased T cell response two months after vaccination. Additionally, a deficient dendritic cell (DC) homing, activation and Toll like receptor (TLR)-mediated function, along with a proinflammatory functional profile in monocytes, were observed in the elderly, which was also related to lower specific T cell response after vaccination. These findings might be relevant for the improvement of the current vaccination strategies and for the development of new vaccine prototypes.This study was funded by Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades, Junta de Andalucia (CV20-85418 and P20_00906, DOC-01659 and DOC-00963); Consejeria de Salud, Junta de Andalucia (RH-0037-2020), Instituto de Salud Carlos III (CP19/00159, FI17/00186, FI19/00083, PI19/01172, CM20/00243) Fondos FEDER, and National Spanish Research Council (CSIC).N

    Permanent control of HIV-1 pathogenesis in exceptional elite controllers: a model of spontaneous cure

    Get PDF
    Elite controllers (EC) represent a small subset of HIV-1-infected people that spontaneously control viral replication. However, natural virological suppression and absence of immune dysfunction are not always long-term sustained. We define exceptional EC (EEC) as HIV-1 subjects who maintain the EC characteristics without disease progression for more than 25 years. We analyzed three EEC, diagnosed between 1988 and 1992, who never showed signs of clinical disease progression in absence of any antiretroviral treatment. A comprehensive clinical, virological, and immunological study was performed. The individuals simultaneously exhibited ≥3 described host protective alleles, low levels of total HIV-1 DNA (0.50). Inflammation levels of EEC were similar to HIV-1 negative donors. Remarkably, they showed an exceptional lack of viral evolution and 8-fold lower genetic diversity (<0.01 s/n) in env gene than other EC. We postulate that these EEC represent cases of spontaneous functional HIV-1 cure. A non-functional and non-genetically evolving viral reservoir along with an HIV-1-specific immune response seems to be key for the spontaneous functional cure.Work in Centro Nacional de Microbiologia (ISCIII) was supported by grants SAF (2016–77894-R) from Ministerio de Economia y Competitividad (MINECO) (Spain) and Fondo de Investigación Sanitaria (FIS)-Instituto de Salud CarlosIII, grant FIS (PI 13/02269, ISCIII) and in part by the RIS-RETIC grants RD12/0017/0028 and RD16CIII/0002/0005 funded by the ISCIII-FEDER. MP has a contract of RIS-RETIC RD16CIII/0002/0005. This work was supported by grants from the MINECO, FIS-Instituto de Salud CarlosIII, Fondos Europeos para el Desarrollo Regional, FEDER, grant numbers PI16/00684, PI19/01127, CPII014/00025 to ER-M. and FI14/00431 to LT-D.; the Gilead Fellowship Program (grant numbers GLD17/00299); the Red de Investigación en Sida (grant number RD16/0025/0020). ER-M. is supported by Consejería de Salud y Bienestar Social of Junta de Andalucía through the Nicolás Monardes Program (C-0032/17). Research in VS-M group was supported by Fondo de Investigación Sanitaria (FIS)-Instituto de Salud CarlosIII, grant FIS (PI 17CIII/00049). Grifols partially supported work in the AIDS Research Institute IrsiCaixa. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    Signatures of immune selection in intact and defective proviruses distinguish HIV-1 elite controllers

    Get PDF
    Increasing evidence suggests that durable drug-free control of HIV-1 replication is enabled by effective cellular immune responses that may induce an attenuated viral reservoir configuration with a weaker ability to drive viral rebound. Here, we comprehensively tracked effects of antiviral immune responses on intact and defective proviral sequences from elite controllers (ECs), analyzing both classical escape mutations and HIV-1 chromosomal integration sites as biomarkers of antiviral immune selection pressure. We observed that, within ECs, defective proviruses were commonly located in permissive genic euchromatin positions, which represented an apparent contrast to autologous intact proviruses that were frequently located in heterochromatin regions; this suggests differential immune selection pressure on intact versus defective proviruses in ECs. In comparison to individuals receiving antiretroviral therapy, intact and defective proviruses from ECs showed reduced frequencies of escape mutations in cytotoxic T cell epitopes and antibody contact regions, possibly due to the small and poorly inducible reservoir that may be insufficient to drive effective viral escape in ECs. About 15% of ECs harbored nef deletions in intact proviruses, consistent with increased viral vulnerability to host immunity in the setting of nef dysfunction. Together, these results suggest a distinct signature of immune footprints in proviral sequences from ECs.This work is supported by NIH grants HL134539 (to X.G.Y.), AI155171 (to X.G.Y.), AI116228 (to X.G.Y.), AI078799 (to X.G.Y.), DA047034 (to X.G.Y.), AI150396 (to X.G.Y.), the Bill and Melinda Gates Foundation (INV-002703) (to X.G.Y.), AI114235 (to M.L.), AI117841 (to M.L.), AI120008 (to M.L.), AI130005 (to M.L.), DK120387 (to M.L.), AI152979 (to M.L.), AI135940 (to M.L.), AI155233 (to M.L.), and the American Foundation for AIDS Research (amfAR#110181) (to M.L.). X.G.Y. and M.L. are members of the DARE Collaboratory (UM1AI126611) and the BEAT-HIV Martin Delaney Collaboratory (UM1 AI126620). E.R.-M. was supported by Consejo Superior de Investigaciones Científicas (CSIC) and by grant PI19/01127, Instituto de Salud Carlos III, Fondos FEDER, and Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades Junta de Andalucia (P20_01276). Support was also provided by the Harvard University and University of California at San Francisco (UCSF)/Gladstone Institute for HIV Cure Research Centers for AIDS Research (P30 AI060354 and P30 AI027763, respectively), which are supported by the following institutes and centers co-funded by and participating with the U.S. National Institutes of Health: NIAID, NCI, NICHD, NHLBI, NIDA, NIMH, NIA, FIC, and OAR. Additional support for the SCOPE cohort was provided by the Delaney AIDS Research Enterprise (DARE; AI096109 and A127966) and the amfAR Institute for HIV Cure Research (amfAR 109301). The International HIV Controller Cohort is supported by the Bill and Melinda Gates Foundation (OPP1066973), the Ragon Institute of MGH, MIT and Harvard, the NIH (R37 AI067073 to B.D.W.), and the Mark and Lisa Schwartz Family Foundation. This project has been funded in whole or in part with federal funds from the Frederick National Laboratory for Cancer Research, under contract no. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. government. This research was supported in part by the Intramural Research Program of the NIH, Frederick National Lab, Center for Cancer Research
    corecore